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The resultant contact forces and moments are determined for the initial stage of the interaction between an absolutely rigid 
smooth convex punch and an anisotropic elastic half-space within the framework of the three-dimensional transient problem, 
unlike the case of vertical indentation considered in [1]. © 1997 Elsevier Science Ltd. All rights reserved. 

Various aspects of the initial stage of the interaction between a smooth convex punch and an elastic 
half-space for an isotropic medium were considered in [2--6]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a homogeneous anisotropic elastic half-space bounded by the planex3 = 0. In an orthogonal 
Cartesian system of coordinatesxtx2z~ (thex3 axis is directed into the half-space) its motion is governed 
by the following equations within the framework of the linear theory of elasticity ( i , j ,  k, m = 1, 2, 3) 

a2u/ 2.. au/ 2 = 13 (1.1) 
ct,,, o a x , a x i  = 7 u,,,, or,,, = ct,,, O ax  i , 7 P ,  

Here u = u,ej is the displacement vector, ej are vectors forming a basis, o ~  and c,,,,ij are  the components 
J . . . . .  

of the stress tensor and the tensor of elasttcmty constants, p ms the densmty of the medmm and 
differentiation with respect to time x is denoted by a dot. In (1.1) and henceforth summation is carried 
out over repeated Latin subscripts from 1 to 3. In these formulae and throughout we use dimensionless 
variables with the following reference units: length L., time L . / c . ,  and mass p.L 3, where L., c. and p. 
are, respectively, some characteristic length, velocity and density. 

Perturbations 01:" one of the two types below are given on the boundary x3 = 0 

ujlx3..0= w j ( x  I , x 2 ) e t2, 

U3Ix3=0 ---- W3(XI, X2)E~r'~, 

Oi3lxS= 0 ----0231x3= 0 ----0 

o.l.,=o= O(x,.x=) • 

033 ,.~, = 0(x I , x 2) ~e 

o r  

(1.2) 

(1.3) 

The solutions are assumed to be bounded at infinity and the initial conditions correspond to the state 
of rest 

u[,-o = fi[~=o = 0 (1.4) 

In the linearized formulation of the contact problem ~ is the flat contact domain obtained by shifting 
the contact surfacx: between the elastic medium and the punch onto the unperturbed boundary of the 
half-space. Perturbations (1.2) correspond to rigid coupling conditions and (1.3) to free slipping 
conditions. For an absolutely rigid punch, wj can be defined by 
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wj = (Uc + rl, e/), Uc = ucje i (1.5) 

where tic is the displacement vector of the centre of  mass of  the punch and r~ is the position vector of 
the bounding surface II of the punch in the system of coordinates linked to it. 

The motion of the punch can be described by the well-known initial-value problem for an absolutely 
rigid body given, for example, in [5]. The velocity of the points of the boundary surface H can be found 
as follows: 

vlu c =Ito, rj], to=tole i (1.6) 

where to is the angular velocity vector of the punch. 
The coupling in the contact problem is determined by the presence in the equations of motion of 

the resulting force R and moment M of contact stresses oj0 = oj31 ~3 = 0. The contact force and moment 
can be computed as follows in the linear formulation 

R = Rjej = ~O/oejdxldx 2 = Jln S/3ejdx,dx2 (1.7) 

M = Mj ej = M0-- [uC, R] 

M o = Mjoe / = JJ[r o, oioe j ldxtdx2 = JJ[r o, Si3e j ]dx,dx2 
R 1 fl 

Oj0(Xl, X2, T,)'=Sj3(X I, X 2, x)H(Do), r0 =xle l  +x2e2 

D O = supp ojo = {(xt, x2, x) I (xb x2) e f L  x _> 0} 

Here H(Do) is the characteristic function of Do. In the case of boundary conditions (1.3) R1 = R2 = 
M3 = 0, and the formulae for the remaining components can be simplified accordingly. 

Relations (1.1), (1.5), (1.7), (1.2) and (1.3) along with the conditions determining ~2 and the initial- 
value problem for the punch provide the mathematical formulation of the contact problem. 

2. I N F L U E N C E  F U N C T I O N  

One possible approach to solving the transient contact problem in question is to use the influence 
functions for a half-space, which can be defined as follows: The displacements un = Gln,~ and stresses 
otn = F~k corresponding to the boundary conditions 

u/x3__0 = 8(x l, XE)8(x)Stj (2.1) 

will be called the influence functions of the first kind (~5 is the Diract delta function and 8kj is the 
Kronecker delta). 

Similarly, the displacements un = G2/,3 and stresses 6t~ = F~,:,3 defined by the boundary conditions 

aj3 x3=0 =8(xj, x2)B(x)Sk/ (2.2) 

will be called the influence functions of the second kind, while un = G3~ and at~ = ~.~ will be referred 
to as the influence functions of the third kind if they satisfy the boundary conditions 

u.al~,=o : 8 ( x , ,  x2)8(x), o,2t,,,=o=O,,l,, ,=o=O (2.3) 

Then the displacements and stresses at any point of the half-space can be written as convolutions of 
the influence functions with the appropriate functions defining the boundary conditions. Thus, on the 
plane x3 = 0 we will have 

m I m0 /M I (GT°=Gn.k. x3=0, r;,.k =~n.k x3=0 ; re=l ,  2, 3) 

I0 I0 u,, o = u,, ~3=0 = Uko *G,,.k, On0 = uk0 * F~,.k (2.4) 
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u,0 = t~j,0 * G,~, O,0 = or0 * F20.k (2.5) 

We denote by an asterisk the convolution with respect to the three variables xl, x2 and x. The 
corresponding integrals are understood as regularized values, since the functions in (2.4) and (2.5) are 
in fact distributiCns. 

The second set of convolutions in (2.4) and the first set in (2.5) are inverse operators to one another. 
The convolutions from the first set in (2.5) can be used as integral equations in contact problems (in 
the case of free slipping (1.3) t~10 = ch0 = 0). An example of such an approach is given, for example, 
in [7]. Convolutions of the following form correspond to the boundary conditions (2.3) 

U,~o = U3o * G.~ ,  O~  = u3o * F.~ 3 (2.6) 

To find the influence functions in problem (1.1), (1.4), and (2.1), ((2.2) or (2.3)) we apply the Fourier 
integral transform with respect to the spatial coordinates xl, x2 (we denote the transform by F and the 
parameters bypl andp2) and the Laplace transform with respect to x (L denotes the transform and s 
the parameter). ]'hen Eqs (1.1) with (1.4) can be written in a matrix form in the image space of these 
transforms 

2 2 

D2U"- i~"  pmDjmU'- ~. pjpmDojmU=y2s2U 
mffil J ,m=l 

2 2 

S = D 2 U ' - i  ~" PmAo,nU, Sl =BIU'-i ~ BomU (2.7) 
m=l m=l 

2 

X = D°U" + (E 3 - i Y. PmAo°,,, )U 
m=l 

:lq i.ii U S S l X - ~'t. _ F L ,  = 

E3 = 18t38,3~3x3, E° = E - E 3 ,  D° = E°D2, Ao°m = E ° A o .  

Here E is the unit matrix, differentiation with respect tox 3 is denoted by a prime, and the 3 x 3 matrices 
D2, Dim, Do/m, Aom, B 1 and B ~  are defined in terms of the elasticity constants of the medium 

Do', =lk:mlnlll, Do,2 = Do r ,  =Ucmtn2], D022 ---Ik.2.21l (2.8) 

D, l=Aol+Ar t ,  Dl2=Ao2+Aor2 

c,,23 c,,3, n flc,,,, c,,3. I 
.,:l iill c,223 c,233  c,22. c,23.  

H¢2213 C2223 ¢2233 N [1¢221m ¢222m ¢223m~ 

Analysing the characteristic equation of the system of differential equations 

6 

~. an(Pl, P2, s) k6-m =0 (2.9) 
n--0 

in (2.7), one can see that the coefficients a~(pl , P2, s) are homogeneous polynomials of degree n and 
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the roots 2q(pl, P2, S) are homogeneous functions of order one with Re 2N < 0 (1 = 1, 2, 3). The 
corresponding system of algebraic equations implies that the eigenvectors k(~)(pl, P2, s) of the 
orthonormalized system are homogeneous functions of order zero. 

The solution of (2.7) bounded at infinity has the form 

3 3 
u = Z c, vl~)ft(x3), s= Z ctvl2)J6(x3) 

I=1 1=1 
3 3 

x = Z ctvl3)t)(x3), s~ = Z c tv l ' )~(x3)  
l=l I=l 

2 

ft(x3)=exp(~.tx3), y ~ )  =(D2~. a - i  ~ p,nAom)y~ ) 
m=l 

2 

y~)=E°y~)+EsY~), Y~)=(B,ka-iZ pmB0,n)Y~ ) 
m=l 

v~  ) ,~(~) ~(~) r 
=nlla ' 1 2 a '  ~ )  

(2.10) 

The constants Ct can be determined from the boundary conditions (2.1) or (2.2) or (2.3) in the image 
space ([5(x)] t" = 1, [$(Xl, x2)] p = 1). Then, for the influence functions of typej  we obtain (there is no 
summation with respect to k) 

_Hr:_jFt. r:_jFt, r:_jrt.Hr=lAj-I ~ , i,*+tM(J).~O)¢,x) U-II'-'l.a, "-'2.a, " 3 . a  u ~ -  I Id I t  Jl ~, 3 
/=1 

S =  "13.ct '  ' 23 , c t '  "33.all =; i ~ - ' J  ' " k l  I t  J IV*31  
(2.11) 

l=l 

Irm  m-u r=lA ( _ l ) / + t ~ ( J ' - ( 4 ' ¢ : -  , Sl =llSll,a, "12,¢t, 122,or H "rid I I  J l~."3J 
l=l 

"), T (.=1.2), IA,l=l. A3=E°A2+E3AI 

Here M~)are the minors corresponding to the elements in the row k and column I of A i and (x is defined 
by et = k for j  = 1, (x = k3 for j  = 2, and ¢t = k = 3 for j  = 3. 

It is not possible to find analytic expressions for the original influence functions mainly because 
of the complexity of (2.9). No practical simplification of the computation of the origin functions 
can be achieved by considering anisotropic media with various symmetries, except for the well-known 
case of an isotropic medium, or by changing to a lower-dimensional (planar or axisymmetric) 
problem. 

For the aforesaid forms of symmetry [8] (where the relation between the four-index symbols Ci;km 
and the two-index symbols cij for the elasticity constants is also given) Eq. (2.9) becomes a bicu~ic 
equation. 

3 
a 2 k ~  6 -2k  = O, a I = a 3 = a5 = 0 (2.12) 

k=0 

and the following functional relations hold 
second-order axis of  symmetry x3 or symmetry about the plane xrr2 

a2k =bk(p2, p2, PIP2, s2) . ~'t=-kt(p 2, P22' P, P2, s2) (2.13) 

an orthotropic medium 

a2,=b,(,?, s2), : )  (2.14) 

transversely isotropic medium with x3 axis 

(2.15) 
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cubic symmetry 

a2 ~ =bk(p2 +p~, p2p22, s2), 2k t =_kl(p21 +p2, p2p~, s 2) (2.16) 

an isotropic medium 

=k,  = 6,? + 2, =k2 = , lp?  + + (2.17) 

'qk = % / c *  cl2=x72/1"12 , c~ 72/_2, ' = q2 x = ~, / (~,+ 21,t) 

where ck are the wave propagation velocities and ~. and ~t are the Lam6 constants. 
The transforms of the influence functions for the plane problem (when the tensor of elasticity constants 

is symmetric about the plane XlX3) can be obtained from (2.7) if we setp2 = 0,pl = p, and u2 -- 0. Then 
the characteristic polynomial (2.9) will be of degree four (a0 = al = 0). In the special cases of an 
orthotropic transversely isotropic medium or cubic symmetry the characteristic equation is biquadratic. 
Even though its roots can be written explicitly, it proves as difficult to obtain explicit formulae for the 
influence functions as in the general case of the plane problem. 

Despite the complexity of the transforms (2.11) of the influence functions they can be used to establish 
a relation between the integral characteristics of the contact problem. 

3. T H E  R E L A T I O N  B E T W E E N  T H E  I N T E G R A L  C H A R A C T E R I S T I C S  

For problems with boundary conditions (1.2) or (1.3) the stresses oj0 or 030 have support f~ in the 
plane x3 = 0. We will denote by f~, the analogous support for the displacements oj0 (Q C fl,).  By the 
force integral characteristics we shall mean the integrals in (1.7), for which we retain the notation Rj 
and M0/of the contact problem. The integral displacements Uj, velocities V/, and their moments Umj, 
V, nj (j  = 1, 2, 3; m = 1, 2) of order one will be called the kinematic integral characteristics 

g, 

u. ,  = v.j =  x.u 0d ,dx2 (3.1) 

UjO(XI, X2, "C)=Wj(Xl, X2, x)H(D~) 

D= = supp ujo = {(xl, x2, X) I (xl, x2) ~ fl=, x > 0} 

We will establish a relation between the force and kinematic characteristics for the problem with 
boundary conditions (1.2). From (1.7), using the properties of the Fourier transform, we find in a similar 
way as in [2, 5, 61 that 

R/=~.t,2~olim ~O~oeit~*'+m'2~dxzdx2=O~o(0, 0, x) 

Mol= lim (x203o)P=-i lim a.._~_ffF 
~.t,2-,o t~.p2--,o 0p2 ~ (3.2) 

By (2.4), to evaluate the limits in (3.2) it is necessary to know the limiting values of the transforms 
of the influence functions F~,, ~ and their derivatives. The eigenvalue problem for the system of 
differential equations in (2.7) has the following form forpz = P2 = 0 

ID2-;21~ =0,  ( O 2 - ; t 2 E ) y t 0 = 0 ,  kt;l=-Ys (3.3) 

v , 0 - - v ,  v2,0. 
i 

(2) ~ =t~ =0 = -Ts~aY ao 731o~ r, YaO =Y~) [  
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Since the matrix D 2 is symmetric, its eigenvalues ~ a r e  real and positive. It can be shown that the numbers 
~ have a well-defined physical meaning, namely, ~/y = c3t are the velocities of propagation of plane 
waves in the direction of e3. 

Using the properties of integral transforms and formulae (2.4), (2.11) and (3.3), from (3.2) we find 
that (~ > 0; l = 1, 2, 3) 

R L ( $ ) =  (I) FL -ys~tjkUko(0, 0, s)=-y~t~)JISU~o(X., x2, s)dx,dx 2 (3.4) 

~t~' - r,OFL,. =[A ,,I - . )3 .k  ~", 0, s) 

Here Alk is the matrix obtained from A10 = A1~,1 =p2 = 0 by replacing row k by II ~f~lo, ~2M~o, ~3M30 II. 
By a direct computation of the determinants I Alk I It can be shown that II lx~,)ll is a symmetric matrix. 

In the space of original functions (3.4) takes the form 

II (3.5) rg 

The last equality can be obtained using the rule for differentiating generalized functions with bounded 
support and the absenc~ of displacement discontinuities on the boundary 0D,, of the support: [wk]aO~ = O. 

It is difficult to find the limiting values of the derivatives of the influence functions from (2.11). It is 
easier to find them by differentiating the system of equations in (2.7) with respect to p,.  Then, using 
boundary conditions (2.1), forpl  = P2 = 0 we obtain (n = 1, 2) 

D2V,~) - y2s2Vno = iDI.U o, 

Vo[x~=o = Voo = 0, 

Q.o = Q.lr~=~=o, 

The vector Uo is defined by (2.11). 
Solving (3.6), we can find the required vector Qnoo = Qno[~ = o 

1 Q.o = i(K.Uo + 1//2x3Di.Uo) 

Q.o = D2Vno - iA0,Uo 

V.o = V, ~=m=o, U0 = Ulr~--m=o 

V. = 3U/3p . ,  Q. = OS/0p. 

• ~ r ,  jF L 3 [,)FL 
Qnoo = ~-~p "23,k, ~ 33.t1 =iK.U0o 

pl=p2=x3=O 

U 0 o = ~ , t ,  82t, 83t~ r,  K .= /1 /2 (Aor . -Ao . ' - I Ix  'n)lt J - II t,. h×3 

2~(n) 
~'lm = ¢lnm3 -- £13m3 

(3.6) 

(3.7) 

By the symmetry of the elasticity constants Cijkm , the elements of the matrices K n have the following 
properties 

Xtn) _ _ ~ ( n )  ~C3) (n) ---- 0 
lm -- "m l  ' "Ira -~" ~mm 

~.) ~l) ~..) ~.> .)  (3.8) 
Xlm - - X n  m m ~¢ln ' XI3 =Xn3 

Substituting (2.4) into (3.2) and using (3.7) and (3.8), we obtain the following formulae in the same 
way as (3.4) and (3.5) (m = 1, 2; k = 1, 2, 3) 



Resultant reactions in the transient contact problem for an anisotropic elastic half-space 795 

Mo2 (,t) = (l) (i) -x3k U k (~) - YIl3t VIk (~) (3.9) 

M03(17 ) =  (t) (t) . . ( Ih /  X2l U k ( ' t )  - '~l.12k VIk ('~) "r/Ftlk V2k 

V,,~ = J'Jxm'k~,~2 
fik 

According to (3.8), the terms with k = 3 are equal to zero in the first sums. It follows that the moments 
M0j are independent of  the volume U3 of the domain bounded by the deformed surface of the half- 
space and the platte x3 = 0. 

An argument :~imilar to (3.2)-(3.9) leads to the following results for boundary conditions 
(1.3) 

R 1 = R 2 = O, R3( ' t  ) = -"tl.t~3)V3 (~)  

M0I (.~) = (3) (3) --'~J'33 V23(~), M02('~) M03 = ~ 3 3  ~ 3 ( x ) ,  = 0 

IJ'(3' = ] ~ 2 [ / [ A  3 3 1 , 3 3  A 33 = E ° A  23 +E3A to 

(3.10) 

A23 =I4,Vt0, 42V20, 4 3 V ~  

Unlike (3.8), here the moments are independent of the integral displacements Ul and U2. 
As follows from (3.4), (3.8) and (3.9), the integral forces and moments are linear combinations of 

the kinematic characteristics with coefficients depending only on the properties of the medium. 
According to (3.7), the non-zero coefficients ×(~ in (3.9) are defined by five pairs of differences of  ten 
constants 

= "-'~32 = c45 - c36, (3.11) 

= o~(2) 2X~ l l )=C5s -C '3  ' 2x(2t' ) c56-cl4' " ' 21  =c25-c46 

. O) The coefficients ~l,~ in (3.4), (3.9) and (3.10) depend on six different elements of the matrix D2: c55, 
c45 , c35 , c44 , c34 , c33. It follows that in the general case of  anisotropy the contact forces and moments 
are independent of some elasticity constants: in the case of  boundary conditions (1.3) they depend on 
six elements of the matrix D2, and in the case of (1.2) on 11 such elements (by (3.11) the above six 
elements are suppl=mented by c36, c23, c13, c56-E14, c25--¢746). 

For elastic forces with symmetry one can find explicit formulae for the coefficients I1(~ and x(~. Let 
us present the results for some cases of symmetry [8] (the first number in brackets indicates the total 
number of interdependent elasticity constants and the second one the number of constants in the 
formulae for the forces and moments). 

Symmetry about the plane XlX 3 (13-7) 
×(2).=.~(1):__ ( i t ) _ ,  (I) = , ~ ( 1 ) = 0  

31 "32 ~ -- ~12 1"23 

~'t ) 4, ~ ( 4 ~ - 4 , ) / I  ~.  " " J  (~ = -- 1~13 ----¢35 43 -- C33 )(43 -- 41) 

p(l) , , ( I )  , , ( I )  - 1.1(3) # , , ( I )  
33 =41  + 4 3  42, =4142  - - I" l l  ' ~'22 -- 33 " ~ l l  

1 ;12.3="~(¢33+¢55~(C33--¢55)2+4¢25 )' 43>;' 

(3.12) 

~2 = C325 "4" (432 -- ¢33 )2 

Second order axis of symmetry x3 (13-7) 

~c2t?:~2~ ~.~ ,,~2~ o "21 ---- 13 =I'23 ---- 

~,I'? = ; ~  - ~ I .  (4~  - ; ,  ) / 13 ~ . .t~" ~' ~ = ~,, (;~ - c4~ ) ( ~  - ; ,  ) / ~ (3.13) 
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B(I) - -  3 3  

2 1 c 

Orthotropic medium (9-5) 

X(2) -- ~(1) = ,g(211 ) _ ,~(2) = O, 
31 -- ~'32 -- ~"21 l.t~ = ; a S ~  (3.14) 

b(3) 
The x3 axis being an axis of symmetry of order three (7-3) or four (7-3), transversely isotropic medium 

(5-3), or cubic symmetry (3-3). These media are indistinguishable in terms of the formulae for the 
resulting forces and moments. Formulae (3.11) and (3.14) with cs5 = c44, c13 = c23 remain valid. 

lsotropic medium (2-2). In this case it is necessary to put c33 = 2C44 4" C13 in the computations for a 
transversely isotropic medium. Using (2.17), we have 

;3 = Y  c2) 1 x / (3 .15)  ; '  = ; '  = '1,'  "3, = = 2 

Acoustic medium (1-1). It makes sense to consider only the boundary conditions (1.3) and the 
corresponding formulae (3.10), where ~(333 ) = Y/~1. 

4. RESULTANT REACTIONS 

The relation between the contact forces (3.5), (3.9) and (3.10) can be applied directly to the contact 
problem only in the so-called supersonic case (f~ = fL), which can be realized for a punch bounded 
by a smooth convex surface rI at the initial stages of the interaction. In this case the boundary af2 of 
the contact domain can be defined precisely as the intersection of the boundary surface rl of the punch 
and the plane x3 = 0. 

The presence of a supersonic interaction stage for an anisotropic elastic medium is due to the bounds 
for the rate of change 12 N of the boundary 0t2 of the contact domain in the normal direction Nta 

I I N ~ C  N V ( X l ,  X 2 ) E ~ r ~ ,  cN=max(qu,  c2u, c3u) (4.1) 

Here ctav are the velocities of propagation of elastic waves in the direction of Nta. For an isotropic medium 
this inequality can be simplified accordingly [5]. 

First, we shall find the integral kinematic characteristics in (3.1) using a specific form of the displace- 
ments w) in (1.5) and formulae (1.6) and (3.9) 

u j = s t = s2,~ + U c : ,  v i = i~ciS + e i~.o~ts2,.. 

v~ =uckV i + v2.#, v2.k~ =uc:2,k +ejt..to:2,~. (4.2) 

h.  = I~.~. + Uc:z . .  + uc.S2,k + UckUc.S 

Here eijk are the components of the Levi-Civita pseudotensor, and the coefficients of the kinematic 
parameters have the following geometric meaning: S is the contact domain area t2; Sk and I ~  (k, m = 
1, 2) are its static moments and moments of inertia about the axes of the system of coordinates Oxlx2; 
S ~  and I2~m are the analogous geometrical characteristics in the system of coordinates OzZlZ2 obtained 
by a parallel translation of Oxlx2 to the point 02, the projection of the centre of mass of the punch onto 
the plane x3 = $2,3 is the difference between the volume of the imbedded part Go of the punch and 
the volume of a cylinder with support t2 and height uc3; 123 =/32 and/33/2 are the geometric static 
moments of Go with respect to the planes xl = 0, x2 = 0 and x3 = 0, respectively. 

Substituting (4.2) into (3.5), (3.9) and (3.10) and using (1.7), we obtain the following expressions for 
the resultant contact forces and moments 
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rigid contact 
R j =  (I) • - - ' ~  jk (UckS + E jlmS2.m(OI ) 

~(2)(,  ,~ , , ( I )  U 
MI = uc3R2 + '~3t ° t  - IP3t  "2.2t  

M3 ~,( t )c  ~ , (1 )  V 
= '~'21 " k  - -  IP2k "2.It + '~l~)V2.2t 

(4.3) 

free slipping 

Rt = R2 = O. R3 = - ~  g3) ( i, c3S + ors2.2 - o2s2.,) 

MI ,~ (3)u  _ , , .  (3) U = -- n't33 "2,23, M2 M3 = 0 (4.4) -- I1~33 "2,13, 

We observe that the expression for R 3 ill (4.4) corresponds to that found in [6]. 
It follows that formulae (4.3) or (4.4) enable us to reduce the problem of determining the kinematic 

parameters of the punch to integrating a quasilinear system of ordinary differential equations in the 
supersonic case. To complete the problem one should construct formulae for the geometrical parameters 
S, $2~ and I 2 ~  as functions of the linear angular displacements of the punch, which is easily done if 
the form of the surface H is specified. 

On the basis of (4.3) and (4.4) one can consider various cases of symmetry of an elastic medium in 
accordance with the discussion in Section 3 and investigate special cases of the contact problem such 
as plane-parallel and vertical motions of a punch or the plane problem. In the last case formulae (4.3) 
and (4.4) are the same as those obtained in [6] for an isotropic medium. 
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